STOCHASTIC MODELS
AN ALGORITHMIC APPROACH
HENK C. TIJMS

SUMMARY

Wiley Series in Probability and Mathematical Statistics
Editors
Stochastic Models:
An Algorithmic Approach
Henk C. Tijms, Vrije Universiteit, Amsterdam.

Stochastic Models: An Algorithmic Approach fulfills the widely perceived need for an introductory text which demonstrates the effective use of simple stochastic models to gain insight into the behaviour of complex stochastic systems.

The author's earlier book, Stochastic Modeling and Analysis: A Computational Approach (1986) has become a leading text in the fields of applied probability and stochastic optimization. While this new book retains the features of providing theory, realistic examples and practically useful algorithms it is written with a wider readership in mind and is more student-oriented.

Covering renewal and regenerative processes, discrete-time and continuous-time Markov chains, Markovian decision processes, inventory and queuing theory the book will enable students to perform algorithmic analysis for specific problems. Chosen to illustrate the basic models and their associated solution methods, the examples are drawn from a variety of applications fields, such as inventory control, reliability, maintenance, insurance and teletraffic. Each chapter concludes with a range of interesting and thought-provoking exercises, some of which require the use of computer software.

The accessible yet rigorous exposition ensures that the book will be an invaluable resource for senior undergraduate and graduate students of operations research, statistics and engineering.

CONTENTS

Préface ix

Chapter 1 Renewal Processes with Applications
1.0 Introduction 1
1.1 Renewal Theory
1.1.1 The renewal function 2
1.1.2 Asymptotic expansions 3
1.1.3 Computation of the renewal function 14
1.2 Poisson Process and Extensions
1.2.1 Poisson process 18
1.2.2 Compound Poisson process 27
1.2.3 Nonstationary Poisson process 30
1.3 Renewal-Reward Processes 32
1.4 Reliability Applications 43
1.5 Inventory Applications
1.5.1 The continuous-review (s, Q) inventory model 51
1.5.2 The periodic-review (R, S) inventory model 58
1.5.3 The periodic-review (R, s, S) inventory model 61
1.5.4 The continuous-review (s, S) inventory model 68
1.5.5 Rational approximations for inventory calculations 69
1.6 Little's Formula 71
1.7 Poisson Arrivals See Time Averages 73
1.8 Asymptotic Expansion for Ruin and Waiting-time Probabilities 78
Exercises 84
Bibliographie Notes 90
References 90
Chapter 2 Markov Chains: Theory and Applications 93
 2.0 Introduction 93
 2.1 Discrete-time Markov Chains 94
 2.2 State Classification 98
 2.3 Long-run Analysis of Discrete-time Markov Chains 106
 2.3.1 Finite-state Markov chains 107
 2.3.2 Infinite-state Markov chains 116
 2.3.3 A numerical approach for the infinite-state balance equations 119
 2.4 Applications of Discrete-time Markov Chains 120
 2.5 Continuous-time Markov Chains 130
 2.6 Long-run Analysis of Continuous-time Markov Chains 135
 2.7 Applications of Continuous-time Markov Chains 143
 2.8 Transient Analysis of Continuous-time Markov Chains 152
 2.8.1 Transient probabilities 152
 2.8.2 First-passage time probabilities 157
 2.9 Phase Method 162
Exercises 169
Bibliographic Notes 177
References 177

Chapter 3 Markovian Decision Processes and their Applications 181
 3.0 Introduction 181
 3.1 Discrete-time Markov Decision Processes 182
 3.2 Policy-iteration Algorithm 191
 3.3 Linear Programming Formulation 199
 3.4 Value-iteration Algorithm 206
 3.5 Semi-Markov Decision Processes 218
 3.6 Tailor-made Policy-iteration Algorithms 233
Exercises 249
Bibliographic Notes 254
References 255

Chapter 4 Algorithmic Analysis of Queuing Models 259
 4.0 Introduction 259
 4.1 Basic Concepts for Queuing Systems 261
 4.2 The M/G/1 Queue 265
 4.2.1 The state probabilities 266
 4.2.2 The waiting-time probabilities 270
 4.3 The M^X/G/1 Queue with Batch Input 274
 4.3.1 The state probabilities 275
 4.3.2 The waiting-time probabilities 277
 4.4 The GI/G/1 Queue 281
 4.5 Multi-server Queues with Poisson Input 286
 4.5.1 The M/M/c queue 287
 4.5.2 The M/D/c queue 288
 4.5.3 The M/G/c queue 292
 4.5.4 The M/C/c queue 301
 4.5.5 The M^X/I/c/c queue 303
 4.6 The GI/c/e Queue 310
 4.6.1 The GI/M/c queue 311
 4.6.2 The GI/D/c queue 316
 4.7 Multi-server Queues with Finite-source Input 321
 4.7.1 Exponential service times 322
 4.7.2 General service times 323
 4.8 Finite-capacity Queuing Systems 324
 4.8.1 The M/G/c+N queuing system 325
 4.8.2 Heuristic for the rejection probability 328
 4.8.3 Two-moment approximation for the minimal buffer size 335
Exercises 337
Bibliographic Notes 341
References 342

Appendices 345
 Appendix A Useful Tools in Applied Probability 345
 Appendix B Useful Probability Distribution Functions 352
 Appendix C Laplace Transforms and Generating Functions 361
 Appendix D Numerical Solution of Markov Chain Equations 368
 References 371
Index 373
TOP
Phase-type distribution. Let us consider Markov process $\tilde{\eta}_t$, $t \geq 0$, with a finite state space $\{1, \ldots, M, M + 1\}$. The states $1, \ldots, M$ are transient and state $M + 1$ is an absorbing state. The service time can be interpreted as a time until the Markov process $\tilde{\eta}_t$, $t \geq 0$, reaches the absorbing state $M + 1$ condition on the fact that the initial state of this process is selected among the transient states acc.