Journal articles

14. (with J. Crussard and M. Koshiba) *\(\pi^-\)-Meson Production in \(\pi^-\)-Nucleon Collisions at 1.5 Bev*, Phys. Rev. 95 (1954) 852.

15. *\(\Lambda^0\)-\(\theta^0\) Production in \(\pi^-\)-P Collisions at 1 Bev*, Phys. Rev. 98 (1955) 1407.

16. (with J. Crussard) *\(\pi^-\)-Nucleon Collisions at 1.5 Bev*, Phys. Rev. 98 (1955) 1416.

20. \(\pi^- \)-Nucleon Interactions at 4.5 Bev, Phys. Rev. 108 (1957) 872.

26. (with A. R. Erwin, R. H. March, and E. West) Evidence for a \(\pi^- \pi^- \) Resonance in the \(I=1, J=1 \) State, Phys. Rev. Lett. 6 (1961) 628.

31. (with W. D. Shepherd) \(\pi^- p \) Interactions at 1.3 BeV, Phys. Rev. 126 (1962) 278.

32. (with A. R. Erwin and R. H. March) Preliminary Results on \(Y_1^* \) and \(K^* \) Production in \(\pi^- p \) Collisions, Nuovo Cim. 24 (1962) 237.

33. (with J. Boyd, A. R. Erwin, P. H. Satterblom, M. A. Thompson, and E. West) Improved Branching Ratio for \(\omega^0 \rightarrow \pi^+ \pi^- / \pi^+ \pi^- \pi^0 \), Phys. Lett. 8 (1964) 208.

34. (with T. F. Wangler and A. R. Erwin) Evidence for a \(K\pi \) Resonance, Phys. Lett. 9 (1964) 71.

42. (with E. West, J. H. Boyd, and A. R. Erwin) Pion-Pion Interactions in $\pi^- p$ Reactions at 2.1 BeV/c, Phys. Rev. 149 (1966) 1089.

49. (with J. H. Boyd, A. R. Erwin, and E. West) Study of $\pi^- p \rightarrow \omega \eta, \phi \eta$ at 2.10 BeV/c, Phys. Rev. 166 (1968) 1458.

55. (with B. Y. Oh et al.), $\pi-\pi$ Phase Shifts in the region 1.0–1.4 GeV/c^2, Phys. Rev. Lett. 23 (1969) 331.

59. (with M. S. Milgrim et al.) Possible Interpretations of the $p\omega$ Mass Enhancement in Near Threshold $\pi^- p \rightarrow \pi^- p\omega$ at 7 GeV/c, Nucl. Phys. B18 (1970) 1.

68. (with R. Morse et al.) Analysis of the $N^*(1500)$ and $N^*(1700)$ Baryon Resonances Produced via Diffraction Dissociation, Phys. Rev. D 4 (1971) 133.

69. (with J. Lynch et al.) Peculiarities Observed in the Reaction $\pi^- p \rightarrow K^- \pi^+ \Lambda$, Phys. Lett. 35B (1971) 457.

70. (with R. Morse et al.) Analysis of the $N^*(1500)$ and $N^*(1700)$ Baryon Resonances Produced via Diffraction Dissociation, Phys. Rev. D 4 (1971) 133.

71. (with J. R. Bensinger, A. R. Erwin, and M. A. Thompson) A Study of S-Wave $\pi^- \pi^+$ Scattering in the Reaction $\pi^- n \rightarrow \pi^0 \pi^0 p$ at 2.15 GeV/c, Phys. Lett. 36B (1971) 134.

86. (with M. E. Binkley et al.) π^0 Multiplicities in $\pi^+ p$ Interactions at 10.5 GeV/c, Phys. Lett. B43 (1972) 295.

95. (with W. M. Yeager et al.) Investigation of π⁺Ne and π Ne Interactions at 10.5 GeV/c, Phys. Rev. D 16 (1977) 1294.

109. (with N. N. Biswas et al.) **Inclusive Production of \(\pi^0, K^0_s, \Lambda^0, \) and \(\Lambda^0\)-bar in 100, 200, and 360 GeV/c \(\pi p \) Interactions**, Nucl. Phys. **B167** (1980) 41.

117. (with K. Abe et al.) **Study of the \(\rho'(1600) \) Mass Region Using \(\gamma p \rightarrow \pi^+ \pi^- \pi^- \) at 20 GeV**, Phys. Rev. Lett. **53** (1984) 751.

118. (with R. K. Clark et al.) **Triggered-Bubble-Chamber Study of the Reaction \(\pi^-p \rightarrow \Delta^{++} \pi^0 \pi^0 \) at 16 GeV/c**, Phys. Rev. D **32** (1985) 1061.

134. (with S. Banerjee et al.) Λ^0 and Λ^0-bar Production from Proton-Antiproton Collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 62 (1989) 12.

136. (with T. Alexopoulis et al.) Mass-Identified Particle Yields in Antiproton-Proton Collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. 64 (1990) 991.

141. (with T. Alexopoulis et al.) Hyperon Production from Proton-Antiproton Collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D 46 (1992) 2773.

143. (with T. Alexopoulos et al., E735 Collaboration) Multiplicity Dependence of Transverse Momentum Spectra of Centrally Produced Hadrons in p-bar p Collisions at 0.3, 0.54, 0.9, and 1.8 TeV Center of Mass, Phys. Lett. B336 (1994) 599.

Books

Sections of Books

Articles in Conference Proceedings

Other Publications

3. Author of an op-ed article on nuclear weapons and espionage (1999).

We investigate the heavy-light mass spectra of D meson in this framework with Martin like confinement potential as in the case of Ds mesons studied recently [18]. If in the present case) shows about 0.76% variations in the binding energy with 5% changes in the parameters \(\lambda \) and \(\sigma \). Fig.(1) shows the energy level diagram of D meson spectra along with available experimental results. Magnetic (M1) Transitions of Open Charm Meson. Spectroscopic studies led us to compute the decay widths of energetically allowed radiative transitions of the type, \(A \to B + \gamma \) among several vector and pseudoscalar states of D meson. Comparison of the conclusions of the theory with the experimental results seems to indicate that the meson is of spin zero and is closely bound to the nucleons as is characteristic of pseudoscalar theory. View abstract. The mean free path for nuclear interaction of the penetrating particles produced in these nuclear interactions is 316\(\pm \)70 g/cm\(^2\) of lead, while for nuclear scattering (large angle scattering without the production of secondaries) it is at least 4 or 5 times this value. The projected zenith angular distributions of the secondaries from these interactions are given. Notes Phys. 817 (Springer, Berlin Heidelberg 2010), DOI 10.1007/978-3-642-14043-3. Lecture Notes in Physics ISSN 0075-8450. 82 5.4 Standard Parametrization of 3×3 Mixing Matrix . . . 86 5.5 On Models of Neutrino Masses and Mixing . . . 89. 6 Neutrino Oscillations in Vacuum . . . This is connected with the fact that neutrinos interact with matter via the exchange of the heavy virtual W ± and Z bosons. \(\bar{\nu} \epsilon \) Neutrino masses are many order of the magnitude smaller than the masses of leptons and quarks. Because of the extreme smallness of the neutrino cross section, special methods of the detection of neutrino processes must be developed.