Owners of the first edition of this classic handbook know that no other book covers the functions and inner workings of electronic instruments as completely as the Electronic Instrument Handbook. Used by both experienced practitioners and newcomers alike, it provides authoritative and easy access to all aspects of measurement tools and technologies. Thoroughly updated, this edition covers not only all the newer types of instruments but also the major changes in instrument technology.

With contributions from leaders in both industry and academia, the Electronic Instrument Handbook starts with the building blocks of instruments and progresses through stand-alone instruments, instrument systems, and virtual instruments. It includes in-depth information on analog-to-digital conversion ... microprocessors in instruments ... lightwave technology ... VXI and other busses ... controllers ... user interfaces ... software in instruments ... and transducers.

This handbook is the only book that explains what each instrument is used for, how it works, how to choose the correct one for an application, and how to get the most out of it in use.

CONTENTS IN BRIEF
Part 6 Lightwave Test Instruments
Chapter 23. Lightwave Signal Sources Waguih Ishak 23.1
Chapter 24. Lightwave Signal Analysis Waguih Ishak 24.1
Chapter 25. Lightwave Component Analyzers Waguih Ishak 25.1
Chapter 26. Optical Time Domain Reflectometers Waguih Ishak 26.1

Part 7 Circuit Element Measurement Instruments
Chapter 27. Impedance Measuring Instruments Yoh Narimatsu 27.1
Chapter 28. Semiconductor Test Instruments James L. Hook 28.1
Chapter 29. Network Analyzers Daniel R. Harkins 29.1

Part 8 Digital Domain Instruments
Chapter 30. DataWord Generators Siegfried Gross 30.1
Chapter 31. Logic Analyzers David B. Richey 31.1
Chapter 32. Protocol Analyzers Justin S. Morrill, Jr. 32.7
Chapter 33. Bit Error Rate Measuring Instruments: Pattern Generators and Error Detectors Hugh Walker 33.1

Part 9 Waveguide Passive Devices
Chapter 34. Microwave Passive Devices Frank K. David 34.1

Part 10 Using Electronic Instruments
Chapter 35. Impedance Considerations D. A. Burt and K. D. Baker 35.1
Chapter 36. Electrical Interference D. A. Burt and K. D. Baker 36.1
Chapter 37. Electrical Grounding D. A. Burt and K. D. Baker 37.1
Chapter 38. Distributed Parameters and Component Considerations D. A. Burt and K. D. Baker 38.1

Part 11 Instruments in Systems
Chapter 40. Introduction to Instrument Systems James M. McGillivarry 40.1
Chapter 41. Switches in Automated Test Systems Calvin Erickson 41.1
Chapter 42. Instrument System Elements James M. McGillivarry 42.1
Chapter 43. Computer-Controlled Instrument Systems James M. McGillivarry 43.1

Part 12 Software in Instruments and Virtual Instruments
Chapter 44. Virtual Instruments and the Role of Software Larry DesJardin 44.1

Acronyms and Abbreviations A.1
Index 1.1

CONTENTS

Contributors xx
Foreword by Dr. Frederick E. Terman xxiii
Preface xxv

Part 1 Introduction to Electronic Instruments
Chapter 1. Measurements and Instruments Tim Healy 1.1
1.1. The Measurement Process 1.1
1.2. Standards 1.2
1.3. Errors in the Measurement Process 1.2
1.4. A Typical Measurement Example 1.4
1.5. Digital Systems and Measurements 1.6
1.6. Conclusion 1.7

Chapter 2. Calibration, Traceability, and Standards David R. Workman 2.1
2.1. Metrology and Metrologists 2.1
2.2. Definitions for Fundamental Calibration Terms 2.1
2.3. Traceability 2.4
2.4. Calibration Types 2.4
2.5. Calibration Requirements 2.5
2.6. Check Standards and Cross-Checks 2.6
2.7. Calibration Methodology 2.6
2.8. Instrument Specifications and Calibration Tests 2.9
2.9. Calibration Standard Requirements 2.10
References 2.12
Bibliography 2.12

Chapter 3. Basic Electronic Standards David R. Workman 3.1
10.10. Computer Interface
10.11. Software Characteristics of the Computer Interface
10.13. Embedded Programming Issues

Chapter 11. Power Supplies James S. Gallo
11.1. Function and Types of Power Supplies and Electronic Loads
11.2. The Direct-Current Power Supply
11.3. The Electronic Load
11.4. The Alternating-Current Power Source
11.5. General Architecture of the Power-Conversion Instrument
11.6. Selecting Your Power-Conversion Instrument

Chapter 12. Instrument-User Interfaces Janice S. Bradford
12.1. Introduction
12.2. Hardware-User Interface Components
12.3. Software-User Interface Components
12.4. Instrument Functionality
12.5. Evaluating the Instrument-User Interface

Part 3 Current and Voltage Measurement Instruments

Chapter 13. Voltage, Current, and Resistance Measuring Instruments Scott Stever
13.1. Introduction
13.2. General Instrument Block Diagram
13.3. DC Voltage Measurement Techniques
13.4. AC Voltage Measurement Techniques
13.5. Current Measurement Techniques
13.6. Resistance Measurement Techniques
13.7. Sources of Measurement Error
13.8. Interpreting Specifications
13.9. Considerations When Selecting a Meter

Chapter 14. Oscilloscopes Alan J. De Vilbiss
14.1. Introduction
14.2. General Oscilloscopes Concepts
14.3. Vertical Amplifier
14.4. Horizontal or Time Base and Trigger
14.5. The Analog Oscilloscope
14.6. The Digital Oscilloscope
14.7. Comparing Analog and Digital Oscilloscopes
14.8. Oscilloscope Probes
14.9. How to Buy an Oscilloscope

Chapter 15. Power Measurements Ronald E. Pratt
15.1. Introduction
15.2. Basic Power Definitions
15.3. Transmission-Type Power Measurements
15.4. Absorption-Type Power Measurements
15.5. Thermistor Sensors and Meters
15.6. Thermocouple Power Meters
15.7. Diode Power Sensors
15.8. Peak Power Measurements
15.9. Effect of Multiple Reflections
15.10. Specifications
15.11. Calibration

Part 4 Signal and Waveform Generation Instruments

Chapter 16. Oscillators, Function Generators, Frequency and Waveform Synthesizers Charles Kingsford-Smith
16.1. Introduction
16.2. Sine-Wave Oscillators
16.3. Function Generators
16.4. Frequency Synthesizers
16.5. Arbitrary Waveform Synthesizers

Chapter 17. Pulse Generators Andreas Pfaff
17.1. Introduction
17.2. Pulse Generator Basics
17.3. Special Pulse Generators
17.4. Applications
Table of Contents

27.3. Characteristics of Electronic Components 27.5
27.4. Impedance Measuring Techniques 27.7
27.5. Connection and Guarding 27.13
27.6. Accuracy Considerations 27.17
27.7. Resistance Measuring Instruments 27.18
27.8. Capacitance Measuring Instruments 27.22
27.9. Inductance Measuring Instruments 27.26
27.10. Impedance Measuring Instruments 27.30

Chapter 28. Semiconductor Test Instruments James L. Hook 28.1
28.1. Introduction to Semiconductor Test Instruments 28.1
28.2. Curve Tracer Instruments 28.3
28.3. Source Monitor Unit (SMU) 28.8
28.4. Digital Pin Electronics (PE) Instruments 28.14
28.5. Semiconductor Test Systems 28.19

Chapter 29. Network Analyzers Daniel R. Harkins 29.1
29.1. Introduction 29.1
29.2. Component Characteristics 29.1
29.3. Network Analysis System Elements 29.4
29.4. Measurement Accuracy 29.8
29.5. Scalar Network Analysis 29.10
29.6. Vector Network Analysis 29.15

Part 8 Digital Domain Instruments

/Word Generators Siegfried Gross 30.1
30.1. Introduction 30.1
30.2. Basic Data Generator 30.5
30.3. Applications 30.11
30.4. Important Considerations 30.15

Chapter 31. Logic Analyzers David B. Richey 31.1
31.1. Introduction to the Digital Domain 31.1
31.2. Basic Operation 31.1
31.3. Using the Key Functions 31.8
31.14 Instrument specifications/Key Features 31.17
31.5. Getting the Most from a Logic Analyzer 31.22

Chapter 32. Protocol Analyzers Justin S. Morrill, Jr. 32.1
32.1. Introduction 32.1
32.2. Applications 32.1
32.3. Protocol Structures 32.2
32.4. An Example with the X.25 Protocol 32.3
32.5. Basic Instrument Architecture and Operation 32.7
32.6. Specifications and Their Significance 32.10
Bibliography 32.13

Chapter 33. Bit Error Rate Measuring Instruments: Pattern Generators and Error Detectors Hugh Walker 33.1
33.1. Introduction 33.1
33.2. Sources of Errors 33.1
33.3. Error Measurements 33.3
33.4. Bit Error Rate (BER) Instrument Architecture 33.4
33.5. Bit Error Rate Measuring Instrument Specifications 33.19

Part 9 Waveguide Passive Devices

Chapter 34. Microwave Passive Devices Frank K. David 34.1
34.1. Introduction 34.1
34.2. Coaxial Transmission Lines 34.1
34.3. Coaxial Passive Devices 34.4
34.4. Planar Transmission Lines 34.11
34.5. Planar Passive Devices 34.13
34.6. Waveguides 34.18
34.7. Waveguide Passive Devices 34.23

Part 10 Using Electronic Instruments

Chapter 35. Impedance Considerations D. A. Burt and K. D. Baker 35.7
35.1. Introduction 35.1
35.2. The Impedance Concept 35.2
35.3. Input and Output Impedance 35.8
35.4. Effects of Instrument Input and Output Impedances on Measurements 35.11
35.5. Impedance Matching 35.16
35.6. Effects of Impedance Mismatch 35.18

Chapter 36. Electrical Interference D. A. Burt and K. D. Baker 36.7
36.1. Introduction 36.1
36.2. Interference and Noise Terminology 36.1
36.3. Instrument Noise 36.2
36.4. Radiated Interference 36.4
36.5. Shielding 36.5
36.6. Conducted Interference 36.6
36.7. Common-Mode Interference 36.7
36.8. Crosstalk 36.14
36.9. Contact Potential 36.16
36.10. Instrument Interconnections 36.16
36.11. General Characteristics and Source of Interference 36.17
36.12. Specific Interference-Source-Reduction Techniques 36.18
36.13. Summary 36.19

Chapter 37. Electrical Grounding D. A. Burt and K. D. Baker 37.1
37.1. Introduction 37.1
37.2. AC Power Grounds 37.1
37.3. Instrument Power Input 37.2
37.4. Instrument Grounds 37.3
37.5. Summary 37.9

Chapter 38. Distributed Parameters and Component Considerations D. A. Burt and K. D. Baker 38.1
38.1. Introduction 38.1
38.2. DC Resistance 38.1
38.3. AC Resistance 38.3
38.4. Leaks 38.4
38.5. Component Stray Parameters 38.8

39.1. Introduction 39.1
39.2. Asynchronous Systems 39.1
39.3. Synchronous Systems 39.2
39.4. Interface Drivers 39.2
39.5. Addressing 39.3
39.6. Data Compression 39.4
39.7. Operational Concerns 39.4
39.8. Interface Standards 39.5

Part 11 Instruments in Systems

Chapter 40. Introduction to Instrument Systems James M. McGillivarry 40.1
40.1. Introduction 40.1
40.2. Instrument System Architecture 40.1
40.3. Hardware 40.1
40.4. Software 40.4
40.5. Applications of Instrument Systems 40.6

Chapter 41. Switches in Automated Test Systems Calvin Erickson 41.1
41.1. Introduction 41.1
41.2. Switch Topologies 41.2
41.3. Switch-Element Technologies 41.5
41.4. Reducing Electronic Noise in Switch Network Design 41.6
41.5. Integration Procedure for Test System Switching 41.9

Chapter 42. Instrument System Elements James M. McGillivarry 42.1
42.1. Introduction 42.1
42.2. Instrument Selection 42.1
42.3. Switching Selection 42.2
42.4. Instrument-to-Controller Interconnect 42.4
42.5. Power Distribution 42.5
42.6. System Resource Interface 42.8
42.7. Signal Cabling 42.11
42.8. Putting It All Together: The Rack Layout 42.16
References 42.16

Chapter 43. Computer-Controlled Instrument Systems James M. McGillivarry 43.1
1.1 Introduction

- Introduction to Electronic Instruments and Measurements
- Calibration, Traceability and Standards
- Basic Electronic Standards
- Data-Acquisition Systems