Introduction to the Theory of Sound Transmission With Application to the Ocean
C. B. Officer
Published 1958

Contents

Chapter 1. Fundamental Relations
 Components of Stress
 Components of Strain
 Stress-Strain Relations
 Equations of Motion
 Fundamental Solution of the Wave Equation

 Adiabatic and Isothermal Condition and the
 Velocity of Sound in Sea Water
 Relations for Energy, Energy Density, Energy
 Flow, and Intensity in Terms of Density,
 Pressure, and Particle Velocity
 Relations for Particle Displacement, Particle
 Velocity, Dilatation, and Stress in Terms
 of Velocity and Displacement Potential
 Unit of Measurement of Intensity, the Decibel

 Waves of Finite Amplitude
 Shock Fronts

Chapter 2. General Theory
 Development of Solution in Terms of Rays
 Ray Characteristics for Velocity a Function of One
 Space Coordinate Only
 Ray Characteristics for a Constant Velocity Gradient

 Development of Solution in Terms of Normal Modes
 Normal-mode Solution in Problems with More Complicated
 Wave Equations
 Refraction of a Dispersive Wave Train

 Boundary Conditions
Chapter 3. Transmission in Shallow Water
- Ray Solution
- Reflection of a Pulse
- Surface Image Interference
- Normal Incidence to One and Two Boundaries
- Normal-mode Solution

Chapter 4. Transmission in Deep Water
- Ray Solution
- Normal-mode Solution
- Near-surface Transmission, Negative Velocity Gradient
- Near-Surface Transmission, Positive Velocity Gradient
 - Overlying a Negative Gradient

Chapter 5. Reflectivity
- Formal Solution, Point Source in the Vicinity of a Plane Boundary
- Evaluation of the Resultant Integral in the Limit of High Frequencies
- Evaluation of the Resultant Integral for Long Ranges and for $c_2 > c_1$
- Evaluation of the Branch-line Integral from the Normal-mode Solution of Chap. 3

- Normal Incidence to a Rapid Change in Velocity
- Reflection from an Elastic Medium
- Normal Incidence to a Corrugated Boundary
- Reflection from a Porous Medium
- Reflection from a Boundary for Which the Boundary Condition is Continuity of Acoustic Impedance

- Reflection from Three Layers
- Horizontal Coupling to a Wave Guide

- Interpretation of Echo Sounding Records
- Interpretation of Geophysical Reflection and Refraction Profiles
Chapter 6. Attenuation
Absorption, Viscous Fluid
Absorption, Heat Conduction
Propagation in a Porous Medium

General Theory for Scattering and Diffraction
Scattering from a Small Object
Diffraction
Reception to a Linear Array

Index

Preface

It has been my intention in this book to give an introduction to the theory of sound transmission. One might consider any acoustic problem as consisting of some sort of source, transmission, and reception. The transmission itself is, of course, an important and integral part of the whole; this is the portion which is covered here. The level of the book is commensurate with that of a senior undergraduate-first-year graduate course. I have attempted to give the theory in such a manner and to such a degree that following this a reader might feel at ease with the published literature in the field. My specific applications of the theory have been to a description of sound transmission in the ocean. Wherever possible I have given the physical explanations of the theoretical results; this I feel is an important part of a thorough understanding of the theory.

I hope that the book may be of interest to those engaged in various aspects of acoustics and geophysics and particularly to those who are entering into or desire to become acquainted with this subject.

The mathematics involved in the various derivations have been carried through in some detail. For those problems involving the evaluation of integrals, the integrals have been reduced to a familiar form or to a convenient tabulated form. On the other hand, no theory or proof of the various mathematical concepts that are used, such as Fourier integrals, is given. On this account the reader may wish to refer to or study an appropriate mathematics text from time to time.

References to the pertinent books and journal articles are covered in a particular chapter are given at the end of the chapter. Specific reference within each chapter has been avoided. Of the more recent theoretical developments, however, special mention should be given to C. L. Pekeris for the normal-mode type of solution. Only general mention is given to experimental work. This has been intentional.

I should like to express by thanks to the Rice Institute and the Woods Hole Oceanographic Institution for their generous policy of allowing an individual to follow the pursuits of his interest and to the Office of Naval Research and the Bureau of Ships, U. S. Navy,
who have encouraged and supported in a number of ways the preparation of this book. I should also like to acknowledge the discussions that I have had at various times with Drs. J. B. Hersey, and A. D. Voorhis and Mr. A. C. Vine, Woods Hole Oceanographic Institution; Profs. M. Ewing, J. Nafe, and J. L. Worzel and Messrs. J. I. Ewing and G. H. Sutton, Lamont Geological Observatory, Columbia University; Prof. F. Press, Seismological Laboratory, California Institute of Technology, Drs. R. Frosch, and I. Tolstoy, Hudson Laboratories, Columbia University; and Dr. E. T. Miller, Houston Research Center, Humble Oil CO., on matters pertinent to this book. Messrs D. G. Harkrider, T. W. Lawhorn, and D. E. Miller, graduate students at the Rice Institute, have critically examined portions of the material covered in this book.

Charles B. Officer
An introduction to the theory of sound, transmission loss and noise control are described. A literature review identified current and previous work in tuned panels, optimisation studies and acoustics in the marine industry. 1. 1.1 Introduction. Composite sandwich panels are increasingly used in the automobile, marine and aircraft industries (see Figure 1.1) because of their high strength to weight ratio. However these materials are also often required to perform well acoustically. This section describes the theory of sound transmission loss (STL) through a single panel. The theory of STL has been separated into sections depending on frequency (see Figure 1.3). STL is defined as a means to divert or dissipate acoustic energy.