RESUME

Owners of the first edition of this classic handbook know that no other book covers the functions and inner workings of electronic instruments as completely as the Electronic Instrument Handbook. Used by both experienced practitioners and newcomers alike, it provides authoritative and easy access to all aspects of measurement tools and technologies. Thoroughly updated, this edition covers not only all the newer types of instruments but also the major changes in instrument technology.

With contributions from leaders in both industry and academia, the Electronic Instrument Handbook starts with the building blocks of instruments and progresses through stand-alone instruments, instrument systems, and virtual instruments. It includes in-depth information on analog-to-digital conversion ... microprocessors in instruments ... lightwave technology ... VXI and other busses ... controllers ... user interfaces ... software in instruments ... and transducers.

This handbook is the only book that explains what each instrument is used for, how it works, how to choose the correct one for an application, and how to get the most out of it in use.

CONTENTS IN BRIEF

Contributors xix
Foreword by Dr. Frederick E. Terman xxi
Preface xxiii

Part 1 Introduction to Electronic Instruments
Chapter 1. Measurements and Instruments Tim Healy 1.1
Chapter 2. Calibration, Traceability, and Standards David R. Workman 2.1
Chapter 3. Basic Electronic Standards David R. Workman 3.1

Part 2 Basics of Electronic Instrumentation
Chapter 4. Introduction to Electronic Instruments Randy Coverstone 4.1
Chapter 5. Transducers J. Fleming Dias 5.1
Chapter 6. Analog-to-Digital Converters John J. Corcoran 6.1
Chapter 7. Signal Sources Charles Kingsford-Smith 7.1
Chapter 8. Microwave Signal Sources William Heinz 8.1
Chapter 9. Signal Processing Howard Hilton 9.1
Chapter 10. Microprocessors in Electronic Instruments Joseph E. Mueller 10.1
Chapter 11. Power Supplies James S. Gallo 11.1
Chapter 12. Instrument-User Interfaces Janice S. Bradford 12.1

Part 3 Current and Voltage Measurement Instruments
Chapter 13. Voltage, Current, and Resistance Measuring Instruments Scott Stever 13.1
Chapter 14. Oscilloscopes Alan J. De Vilbiss 14.1
Chapter 15. Power Measurements Ronald E. Pratt 15.1

Part 4 Signal and Waveform Generation Instruments
Chapter 16. Oscillators, Function Generators, Frequency and Waveform Synthesizers Charles Kingsford-Smith 16.1
Chapter 17. Pulse Generators Andreas Pfaff 17.1
Chapter 18. Microwave Signal Generators William Heinz 18.1

Part 5 Frequency and Time Measurement Instruments
Chapter 19. Electronic Counters and Frequency and Time Interval Alwin D. Sasaki 19.1
Chapter 20. Precision Time and Frequency Sources John A. Kusters 20.1
Chapter 22. Phase Noise Instruments Dieter Scherer 22.7
Chapter 3. Basic Electronic Standards

3.1. International System of Measurement Units
3.2. Traceability of Standards
3.3. Standards Maintained by NIST
3.4. References
3.5. Bibliography

Part 2 Basics of Electronic Instrumentation

Chapter 4. Introduction to Electronic Instruments

4.1. Introduction
4.2. Instruments
4.3. The Signal Flow of Electronic Instruments
4.4. The Instrument Block Diagram
4.5. Measurement Systems
4.6. Summary

Chapter 5. Transducers

5.1. Introduction
5.2. Transduction Mechanisms and Measurands
5.3. Classification of Transducers
5.4. Selection of Transducers
5.5. Capacitive Transducers
5.6. Inductive Transducers
5.7. Electromagnetic Transducers
5.8. Resistive Transducers
5.9. Hall-Effect Transducers
5.10. ChemFET Transducers
5.11. Piezoelectric Wave-Propagation Transducers
5.12. Tunneling Displacement Transducers
5.13. Thermodynamic Transducers
5.14. Ionization Transducers
5.15. Photonic Transducers
5.16. Fiber-Optic Transducers
5.17. References

Chapter 6. Analog-to-Digital Converters

6.1. Introduction
6.2. What Is an Analog-to-Digital Converter?
6.3. Types of Analog-to-Digital Converters
6.4. Integrating Analog-to-Digital Converters
6.5. Parallel Analog-to-Digital Converters
6.6. Multistep Analog-to-Digital Converters
6.7. Static ADC Errors and Testing Techniques
6.8. Dynamic ADC Errors and Testing Techniques
6.9. References

Chapter 7. Signal Sources

7.1. Introduction
7.2. Kinds of Signal Waveforms
7.3. How Periodic Signals Are Generated
7.4. Signal Quality Problems

Chapter 8. Microwave Signal Sources

8.1. Introduction
8.2. Solid-State Sources of Microwave Signals
8.3. Control and Modulation of Signal Sources
8.4. Frequency Synthesis

Chapter 9. Signal Processing

9.1. Introduction
9.2. Signal-Processing Functions
9.3. Signal-Processing Hardware
9.4. References

Chapter 10. Microprocessors in Electronic Instruments

10.1. Introduction
10.2. What a Microprocessor Is
10.3. Hardware Components of a Microprocessor System
10.4. Firmware Components of a Microprocessor System
10.5. Microcontrollers
10.6. Multiple Processors
10.7. An Example Application of a Microprocessor in an ADC
10.8. Calibration and Correction
10.9. Human Interface
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10. Computer Interface</td>
<td>10.18</td>
</tr>
<tr>
<td>10.11. Software Characteristics of the Computer Interface</td>
<td>10.19</td>
</tr>
<tr>
<td>10.13. Embedded Programming Issues</td>
<td>10.25</td>
</tr>
<tr>
<td>Chapter 11. Power Supplies</td>
<td>11.1</td>
</tr>
<tr>
<td>11.1. Function and Types of Power Supplies and Electronic Loads</td>
<td>11.1</td>
</tr>
<tr>
<td>11.2. The Direct-Current Power Supply</td>
<td>11.1</td>
</tr>
<tr>
<td>11.3. The Electronic Load</td>
<td>11.5</td>
</tr>
<tr>
<td>11.4. The Alternating-Current Power Source</td>
<td>11.7</td>
</tr>
<tr>
<td>11.5. General Architecture of the Power-Conversion Instrument</td>
<td>11.8</td>
</tr>
<tr>
<td>11.6. Selecting Your Power-Conversion Instrument</td>
<td>11.18</td>
</tr>
<tr>
<td>Chapter 12. Instrument-User Interfaces</td>
<td>12.1</td>
</tr>
<tr>
<td>12.1. Introduction</td>
<td>12.1</td>
</tr>
<tr>
<td>12.2. Hardware-User Interface Components</td>
<td>12.1</td>
</tr>
<tr>
<td>12.3. Software-User Interface Components</td>
<td>12.15</td>
</tr>
<tr>
<td>12.4. Instrument Functionality</td>
<td>12.19</td>
</tr>
<tr>
<td>12.5. Evaluating the Instrument-User Interface</td>
<td>12.23</td>
</tr>
<tr>
<td>Bibliography</td>
<td>12.24</td>
</tr>
<tr>
<td>Part 3 Current and Voltage Measurement Instruments</td>
<td></td>
</tr>
<tr>
<td>Chapter 13. Voltage, Current, and Resistance Measuring Instruments</td>
<td>13.1</td>
</tr>
<tr>
<td>13.1. Introduction</td>
<td>13.1</td>
</tr>
<tr>
<td>13.2. General Instrument Block Diagram</td>
<td>13.3</td>
</tr>
<tr>
<td>13.3. DC Voltage Measurement Techniques</td>
<td>13.4</td>
</tr>
<tr>
<td>13.4. AC Voltage Measurement Techniques</td>
<td>13.5</td>
</tr>
<tr>
<td>13.5. Current Measurement Techniques</td>
<td>13.9</td>
</tr>
<tr>
<td>13.7. Sources of Measurement Error</td>
<td>13.14</td>
</tr>
<tr>
<td>13.9. Considerations When Selecting a Meter</td>
<td>13.29</td>
</tr>
<tr>
<td>Chapter 14. Oscilloscopes</td>
<td>14.1</td>
</tr>
<tr>
<td>14.1. Introduction</td>
<td>14.1</td>
</tr>
<tr>
<td>14.2. General Oscilloscopes Concepts</td>
<td>14.3</td>
</tr>
<tr>
<td>14.3. Vertical Amplifier</td>
<td>14.7</td>
</tr>
<tr>
<td>14.4. Horizontal or Time Base and Trigger</td>
<td>14.18</td>
</tr>
<tr>
<td>14.5. The Analog Oscilloscope</td>
<td>14.27</td>
</tr>
<tr>
<td>14.6. The Digital Oscilloscope</td>
<td>14.40</td>
</tr>
<tr>
<td>14.7. Comparing Analog and Digital Oscilloscopes</td>
<td>14.54</td>
</tr>
<tr>
<td>14.8. Oscilloscope Probes</td>
<td>14.54</td>
</tr>
<tr>
<td>14.9. How to Buy an Oscilloscope</td>
<td>14.60</td>
</tr>
<tr>
<td>Chapter 15. Power Measurements</td>
<td>15.7</td>
</tr>
<tr>
<td>15.1. Introduction</td>
<td>15.1</td>
</tr>
<tr>
<td>15.2. Basic Power Definitions</td>
<td>15.1</td>
</tr>
<tr>
<td>15.3. Transmission-Type Power Measurements</td>
<td>15.3</td>
</tr>
<tr>
<td>15.4. Absorption-Type Power Measurements</td>
<td>15.5</td>
</tr>
<tr>
<td>15.5. Thermistor Sensors and Meters</td>
<td>15.6</td>
</tr>
<tr>
<td>15.6. Thermocouple Power Meters</td>
<td>15.8</td>
</tr>
<tr>
<td>15.7. Diode Power Sensors</td>
<td>15.11</td>
</tr>
<tr>
<td>15.8. Peak Power Measurements</td>
<td>15.13</td>
</tr>
<tr>
<td>15.9. Effect of Multiple Reflections</td>
<td>15.13</td>
</tr>
<tr>
<td>15.10. Specifications</td>
<td>15.15</td>
</tr>
<tr>
<td>15.11. Calibration</td>
<td>15.16</td>
</tr>
<tr>
<td>Part 4 Signal and Waveform Generation Instruments</td>
<td></td>
</tr>
<tr>
<td>Chapter 16. Oscillators, Function Generators, Frequency and Waveform</td>
<td>16.1</td>
</tr>
<tr>
<td>Synthesizers</td>
<td></td>
</tr>
<tr>
<td>16.1. Introduction</td>
<td>16.1</td>
</tr>
<tr>
<td>16.2. Sine-Wave Oscillators</td>
<td>16.1</td>
</tr>
<tr>
<td>16.3. Function Generators</td>
<td>16.4</td>
</tr>
<tr>
<td>16.4. Frequency Synthesizers</td>
<td>16.9</td>
</tr>
<tr>
<td>16.5. Arbitrary Waveform Synthesizers</td>
<td>16.18</td>
</tr>
<tr>
<td>Chapter 17. Pulse Generators</td>
<td>17.1</td>
</tr>
<tr>
<td>17.1. Introduction</td>
<td>17.1</td>
</tr>
<tr>
<td>17.2. Pulse Generator Basics</td>
<td>17.3</td>
</tr>
<tr>
<td>17.3. Special Pulse Generators</td>
<td>17.4</td>
</tr>
<tr>
<td>17.4. Applications</td>
<td>17.6</td>
</tr>
</tbody>
</table>
Chapter 36. Electrical Interference D. A. Burt and K. D. Baker
36.1. Introduction
36.2. Interference and Noise Terminology
36.3. Instrument Noise
36.4. Radiated Interference
36.5. Shielding
36.6. Conducted Interference
36.7. Common-Mode Interference
36.8. Crosstalk
36.9. Contact Potential
36.10. Instrument Interconnections
36.11. General Characteristics and Source of Interference
36.12. Specific Interference-Source-Reduction Techniques
36.13. Summary

Chapter 37. Electrical Grounding D. A. Burt and K. D. Baker
37.1. Introduction
37.2. AC Power Grounds
37.3. Instrument Power Input
37.4. Instrument Grounds
37.5. Summary

Chapter 38. Distributed Parameters and Component Considerations D. A. Burt and K. D. Baker
38.1. Introduction
38.2. DC Resistance
38.3. AC Resistance
38.4. Leakages
38.5. Component Stray Parameters

39.1. Introduction
39.2. Asynchronous Systems
39.3. Synchronous Systems
39.4. Interface Drivers
39.5. Addressing
39.6. Data Compression
39.7. Operational Concerns
39.8. Interface Standards

Part 11 Instruments in Systems

Chapter 40. Introduction to Instrument Systems James M. McGillivarry
40.1. Introduction
40.2. Instrument System Architecture
40.3. Hardware
40.4. Software
40.5. Applications of Instrument Systems

Chapter 41. Switches in Automated Test Systems Calvin Erickson
41.1. Introduction
41.2. Switch Topologies
41.3. Switch-Element Technologies
41.4. Reducing Electronic Noise in Switch Network Design
41.5. Integration Procedure for Test System Switching

Chapter 42. Instrument System Elements James M. McGillivarry
42.1. Introduction
42.2. Instrument Selection
42.3. Switching Selection
42.4. Instrument-to-Controller Interconnect
42.5. Power Distribution
42.6. System Resource Interface
42.7. Signal Cabling
42.8. Putting It All Together: The Rack Layout

Chapter 43. Computer-Controlled Instrument Systems James M. McGillivarry
43.1
Now in an up-to-the-minute third edition, the bestselling Electronic Instrument Handbook, by top technical author Clyde F. Coombs, Jr. and over 30 leading experts, helps you design, select and operate conventional, virtual, and network-based electronic instruments. From calibration, traceability standards, data acquisition, transducers, analog-to-digital conversion, signal sources, processors and microprocessors, power supplies