Contents

Preface xiii

1 What Is Population Viability Analysis, and How Can It Be Used in Conservation Decision-Making? 1
 Potential Products and Uses of PVA 2
 Types of Population Viability Analysis 8
 A Roadmap to This Book 10
 Our Modeling Philosophy: Keep It Simple 12

2 The Causes and Quantification of Population Vulnerability 15
 Mean Vital Rates and Population Viability 16
 Temporal Variability in Vital Rates 18
 Other Processes Influencing Viability 36
 Quantifying Population Viability 43

3 Count-Based PVA: Density-Independent Models 51
 Population Dynamics in a Random Environment 52
 The Relationship between the Probability of Extinction and the Parameters μ and σ^2 58
 Using Count Data to Estimate the Population Growth Parameters μ and σ^2: An Illustration Using the Yellowstone Grizzly Bear Census 64
 Using Estimates of μ and σ^2 to Calculate Probability of Extinction 79
 Using Extinction Time Estimates 87
 Key Assumptions of Simple Count-Based PVAs 89
 When to Use This Method 96

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
4 Count-Based PVA: Incorporating Density Dependence, Demographic Stochasticity, Correlated Environments, Catastrophes, and Bonanzas 99
Density Dependence 100
Combined Effects of Demographic and Environmental Stochasticity 127
Environmental Autocorrelation 133
Catastrophes, Bonanzas, and Other Highly Variable Effects 141
Concluding Remarks 146
Appendix: An Overview of Maximum Likelihood Parameter Estimation 147

5 Accounting for Observation Error in Count-Based PVAs 151
Potential Sources of Observation Error 152
Considerations for Reducing Observation Error before a Census Is Initiated 155
Quantifying Observation Errors while a Census is Being Conducted 157
Correcting for Observation Errors after the Census Data Have Been Collected 158
A Directory to More Advanced Methods for Estimating Parameters in the Face of Observation Error 179

6 Demographic PVAs: Using Demographic Data to Build Stochastic Projection Matrix Models 181
Overview of Procedures for Building Projection Matrices 182
Step 1: Conducting a Demographic Study 183
Step 2: Establishing Classes 186
Step 3: Estimating Vital Rates 196
Step 4: Building the Projection Matrix 204
Putting It All Together: Estimating Projection Matrices for Mountain Golden Heather 210

7 Demographic PVAs: Using Projection Matrices to Assess Population Growth and Viability 215
Structured Populations in a Deterministic Environment 217
Growth and Extinction Risk of Structured Populations in a Variable Environment 228
8 Demographic PVAs Based on Vital Rates: Removing Sampling Variation and Incorporating Large Variance, Correlated Environments, Demographic Stochasticity, and Density Dependence into Matrix Models 251
 Estimation and Construction of Stochastic Models Based on Vital Rates 253
 Simulations to Estimate Population Rate and Extinction Risk 274
 Simulating Demographic Stochasticity 305
 Including Density Dependence in Matrix Models 310

9 Using Demographic PVA Models in Management: Sensitivity Analysis 325
 The Basic Idea of Sensitivity Analysis 326
 Sensitivity Analysis for Deterministic Matrices 331
 Sensitivity Analysis for Stochastic Matrix Models 351
 Sensitivity Analysis for Density-Dependent Models 369

10 Population Dynamics across Multiple Sites: The Interaction of Dispersal and Environmental Correlation 373
 Terminology for Multi-Site PVAs 375
 Multi-Site Processes and Data Needs 375
 A Schematic Breakdown of Multi-Site Situations 398
 Using Occam’s Razor in Multi-Site PVAs 402

11 Methods of Viability Analysis for Spatially Structured Populations 403
 Patch-Based Approaches 403
 Count-Based Approaches 423
 Demographic Approaches 432
 Using Multi-Site PVAs with Care 440

12 Critiques and Cautions: When to Perform (and When Not to Perform) a Population Viability Analysis 443
 Critiques and Criticisms of PVA 444
 General Recommendations and Cautions for Conducting a Population Viability Analysis 450
 Closing Remarks 454

Appendix: Mathematical Symbols Used in This Book 455
Literature Cited 459
Index 472
SAS and MATLAB Programs

BOX 2.1 MATLAB code to simulate population trajectories, drawing each year’s annual growth rate from a list of observed rates 29

BOX 3.1 Output produced by SAS commands given in Equation 3.11 70
BOX 3.2 Output produced by SAS commands given in Equation 3.14 78
BOX 3.3 MATLAB code defining five functions used in calculating the extinction time cumulative distribution function and its confidence limits 80
BOX 3.4 MATLAB code to calculate extinction probabilities and bootstrap confidence intervals 85

BOX 4.1 MATLAB code to plot the mean time to extinction for the ceiling model as functions of the carrying capacity and initial population size 105
BOX 4.2 SAS program to fit three models to Bay checkerspot census data 112
BOX 4.3 Key output from SAS program used to fit three models to data from the JRC Bay checkerspot population 114
BOX 4.4 MATLAB code to predict the probability of extinction using the theta logistic model 120
BOX 4.5 MATLAB program to simulate growth of a density-dependent population with both environmental and demographic stochasticity 130
BOX 4.6 MATLAB code to calculate the probability of quasi-extinction for the Ricker model with temporally autocorrelated environmental effects 140
BOX 4.7 MATLAB code to calculate extinction risk in the presence of catastrophes and bonanzas 144
BOX 5.1 MATLAB code to correct a raw estimate of σ^2 for sampling variation when census counts represent means from replicate samples 165
BOX 5.2 MATLAB code defining the function “dennisholmes”, which estimates \(\mu \) and \(\sigma^2 \) using the method of Holmes (2001) 175

BOX 7.1 MATLAB code defining the function “eigenall”, which calculates eigenvalues and eigenvectors of the matrix \(A \) 223

BOX 7.2 Fragment of MATLAB code that uses the function “eigenall” to generate Equations 7.8, 7.9, and 7.11 using the semi-palmated sandpiper projection matrix in Equation 7.5 225

BOX 7.3 MATLAB code to simulate growth of a structured population in an iid stochastic environment 231

BOX 7.4 MATLAB code to estimate \(\log \lambda_s \) by simulation and by Tuljapurkar’s approximation 235

BOX 7.5 MATLAB code to simulate the extinction time cumulative distribution function 242

BOX 7.6 Fragment of MATLAB code to calculate the extinction time CDF for mountain golden heather 247

BOX 8.1 MATLAB code to use White’s method to correct for sampling variation 260

BOX 8.2 MATLAB code to use Kendall’s method to correct for sampling variation 267

BOX 8.3 A second MATLAB function to make beta-distributed random numbers 277

BOX 8.4 A MATLAB m-file for the function lnorms, which returns random lognormal values 281

BOX 8.5 A MATLAB m-file defining the function stretchbetaval, which returns stretched beta-distributed values 283

BOX 8.6 A simple example program to generate correlated random vital rates using an estimated correlation matrix between vital rates 284

BOX 8.7 MATLAB file for the function stnormalfx, which provides a good standard normals 288

BOX 8.8 A MATLAB program going through steps needed to calculate a correlation matrix and look for the problems caused by sparse sampling or small numbers of observations, using correlations for the desert tortoise 291

BOX 8.9 A program to demonstrate the simulation of within-year correlations, autocorrelations, and cross-correlation in vital rates 295
BOX 8.10 A program to calculate the extinction time CDF and the stochastic growth rate for Hudsonia, using simulations that include correlation, autocorrelation, and cross-correlation 301

BOX 8.11 A function to decide the fates of a set of individuals simultaneously, given a set multinomial probabilities of different outcomes 306

BOX 8.12 MATLAB code to perform a density-dependent demographic PVA for the Iberian lynx 315

BOX 8.13 A MATLAB program to simulate deterministic, density-dependent growth of a salmon population 322

BOX 9.1 A MATLAB program to find the sensitivities and elasticities of λ_1 to vital rates 335

BOX 9.2 MATLAB code to simulate random matrices between user-defined limits 246

BOX 9.3 A MATLAB function to calculate the second derivatives of deterministic growth rate (or first derivatives of sensitivities) with respect to matrix elements 354

BOX 9.4 A MATLAB program to calculate the sensitivities and elasticities of stochastic growth rate (λ_s) to means, variances, and covariances of matrix elements 355

BOX 9.5 A MATLAB program that performs stochastic simulations to estimate the sensitivities and elasticities of stochastic growth rate (λ_s) and extinction probabilities to mean, variance, and covariance of matrix elements 360

BOX 10.1 A MATLAB program to calculate join-count statistics for spatial correlations between binary data 386

BOX 11.1 A MATLAB program to find the maximum likelihood parameter values for a logistic regression model of metapopulation dynamics 415

BOX 11.2 MATLAB function that provides an estimate of the log-likelihood of a set of occupancy, extinction, and colonization data 417

BOX 11.3 A program to simulate a logistic regression model for patch-based metapopulation dynamics 421

BOX 11.4 A stochastic simulation for a count-based multi-site PVA. 425

BOX 11.5 A MATLAB program to perform demographic, multi-site simulations 435
biology important to conservation. (9) Use of genetic markers in forensics. The rest six of these involve primarily, or solely, quantitative genetics. The relationship between conservation genetics and quantitative genetics is akin to that between animal breeding and quantitative genetics. One is an applied discipline and the other is a more academic discipline, with the two having intimate connections. There has been considerable two-way flow of information between conservation genetics and quantitative genetics. Conservation biology is the management of nature and of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions. It is an interdisciplinary subject drawing on natural and social sciences, and the practice of natural resource management.:478. The conservation ethic is based on the findings of conservation biology. Quantitative methods are needed in conservation biology more than ever as an increasing number of threatened species find their way onto international and national "red lists. Objective evaluation of population decline and extinction probability are required for sound decision making. Yet, as our colleague Selina Heppell points out, population viability